Lectură suplimentară#
Vectorii și valorile proprii reprezintă modalitatea prin care pot fi studiate cu ușurință matricele pătratice. Acest subcapitol a pus bazele lor, însă, pentru mai multe informații, vă recomand:
-
Cartea Linear Algebra and Its Applications, scrisă de Gilbert Strang[28];
-
Articolul propus de Jessica Bosch și Chen Greif[31];
-
Cartea Parallel Scientific Computing in C++ and MPI, scrisă de George Em Karniadakis și Robert M. Kirby II[44].
Pentru cele două tipuri de deflație ce au fost prezentate, vă recomandăm:
-
Explicația deflației Householder, propusă de George Karniadakis[20];
-
Explicația deflației Wielandt, propusă în cartea lui Carlos A. Felippa, Intoduction to Finite Element Methods[3];
-
Cartea Parallel Scientific Computing in C++ and MPI, scrisă de George Em Karniadakis și Robert M. Kirby II[44].
Metoda QR este bine explicată în următoarele surse:
-
Materiale mai vechi ale lui Valeriu Iorga[49];
Factorizarea DVS, deși importantă și deosebit de interesantă, nu și-a făcut simțită prezența în această carte. Tocmai de aceea, vă recomandăm să treceți în revistă măcar o parte din resursele:
În cazul în care informațiile găsite nu vă satisfac curiozitatea, mai există o carte cu metode numerice explicate, Numerical analysis (9th edition) (Richard L. Burden și J. Douglas Faires)[7], pe care însă evit să o recomand.
Licență#
The book "Metode Numerice", written by Valentin-Ioan Vintilă, is licensed under CC BY-NC-SA 4.0